
C-A/AP/#267 
February 2007 

 
 
 

Simulations of RHIC Orbit Response 
Analysis using LOCO 

 
 
 
 

T. Satogata, J. Niedziela 
 
 
 
 
 

 
 
 
 
 

Collider-Accelerator Department 
Brookhaven National Laboratory 

Upton, NY  11973 
 



Simulations of RHIC Orbit Response Analysis using LOCO

T. Satogata and J. Niedziela

January 31, 2007

Abstract

Orbit response matrix (ORM) measurements are used in many circular accelerators to measure and
correct gradient and optics errors, beam position monitor (BPM) gain errors, and dipole corrector gain
errors [1]. Here we report results of numerical studies of the RHIC FY06 polarized proton injection and
storage lattices to evaluate the feasibility of RHIC ORM analysis, and quantify the effect of random
errors (including BPM noise) on ORM analysis of the RHIC lattice.

1 ORM Description

An orbit response matrix (ORM) R is a matrix that associates BPM difference orbit changes ∆xi with
corrector changes ∆θj :

∆x1

∆x2

...
∆xn

 =


R11 R12 ... R1m

R21 R22 ... R2m

... ... ... ...
Rn1 Rn2 ... Rnm




∆θ1

∆θ2

...
∆θn

 ≡ R


∆θ1

∆θ2

...
∆θn

 (1)

The ORM includes coupling when (i, j) range over horizontal and vertical BPMs and correctors. Rij is
well-known in a linear uncoupled lattice, but can also include nonlinear and coupling terms such as those
from closed orbit sextupole feed-down, and dispersive terms due to path length changes.

The ORM can be modeled (Rmodel) and measured (Rmeas). A nonzero difference Rdiff ≡ Rmodel−Rmeas

is sensitive to many error sources including quadrupole gradient errors, quadrupole rolls, BPM gain errors,
corrector gain errors, and sextupole closed orbit offsets. This sensitivity has been used at several accelerators
to correct these errors, and bring machine optics much closer to modeled optics [1]. The model should be as
complete a design model as possible so differences are attributable to errors in the actual machine and not
shortcomings of the model.

In that spirit, the objective of ORM analysis is to minimize Rdiff by varying machine parameters vk.
This is done by solving 

∆R11

∆R12

...
∆Rn(m−1)

∆Rnm

 = Jmodel


∆v1

∆v2

...
∆vN−1

∆vN

 (2)

where

Jmodel ≡


∂R11/∂v1 ∂R11/∂v2 ... ∂R11/∂vN

∂R12/∂v1 ∂R12/∂v2 ... ∂R12/∂vN

... ... ... ...
∂Rn(m−1)/∂v1 ∂Rn(m−1)/∂v2 ... ∂Rn(m−1)/∂vN

∂Rnm/∂v1 ∂Rnm/∂v2 ... ∂Rnm/∂vN

 (3)

Here ∆Rij ≡ Rij,model − Rij,meas (be careful of the sign), and vk are the fit variables such as quadrupole
gradient error, quadrupole roll, etc. The differentials ∂Rij/∂vk in the large response matrix Jacobian Jmodel

are obtained from the model, either from variational principles or modeled response matrices. These terms
are trivial to generate for BPM and corrector gain errors.

The ORM solution is usually improved by weighting Eqn. (2) with measured BPM noise levels σi. This is
accomplished by dividing both ∆Rij and ∂Rij/∂vk by σi before solving. For simplicity, we avoid a notation
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change and assume that this weighting is applied in the remainder of this paper; this becomes important
when BPM noise is introduced in Sections 5 and 6.

Jmodel is usually not square, and the ORM problem for accelerators is always overconstrained with
n ×m (the number of BPMs times the number of correctors) being much greater than N (the number of
fit variables). The least-squares solution to Eqn. (2) is most easily found with singular value decomposition
(SVD) [2].

Jmodel = USVT (4)

where U is an nm×N orthogonal matrix, V is an N ×N orthogonal square matrix,

UUT = VVT = I (5)

and S is an N ×N diagonal matrix whose elements are the singular values of Jmodel. Using Eqn. (5),

Jmodel
−1 = VS−1UT (6)

In practice very small singular values (corresponding to degeneracies of the parameter space) are eliminated
by setting the corresponding diagonal elements of S−1 to zero. “Very small” depends on the problem,
and one objective of this work is to determine the appropriate singular value cut for the RHIC lattice, so
degeneracies are properly removed without ruining the effectiveness of the SVD solution given below.

The optimal least-squares solution for Eqn. (2) is then given [3] by
∆v1

∆v2

...
∆vN−1

∆vN

 = Jmodel
−1


∆R11

∆R12

...
∆Rn(m−1)

∆Rnm

 = VS−1UT


∆R11

∆R12

...
∆Rn(m−1)

∆Rnm

 (7)

Since the dependence of ∆Rij is not linear on some variables ∆vk (such as quadrupole gradients), each
solution should be applied to the model and iterated (with Jmodel changing with every iteration) until the
solution for ∆vk converges. Rather than write separate analysis software, we have chosen to use the LOCO
(Linear Optics from Closed Orbits [4]) and AT (Accelerator Toolkit [5]) packages in a Matlab environment
to evaluate the feasibility of ORM analysis and gradient corrections in RHIC.

2 Matlab, AT, and LOCO Infrastructure

Matlab v7 is installed for user mcr on the host cheetah.pbn.bnl.gov behind the C-AD operations firewall, in
the directory /home/cheetah/matlab. This license permits any number of concurrent sessions as long as they
are only executed by the mcr account on this host. The mcr Matlab working area is located in the directory
~mcr/Matlab, and LOCO and AT software are installed in the directory ~mcr/Matlab/at. Instructions on
how to set up this Matlab environment to use AT and LOCO are in the file ~mcr/Matlab/README.

To evaluate RHIC lattices in this environment, they must be converted to the Matlab AT language.
We have written a perl script, RhicSxfToAT.pl, to convert RHIC SXF lattices acquired from the RHIC
online model using RhicModelPlayer to AT. The resulting Matlab AT lattice file puts the RHIC lattice in
the standard AT global variable THERING. The conversion process is straightforward, but a few items are of
interest:

• All quadrupoles are modeled with the StrMPoleSymplectic4Pass element model [5]. Changes to
quadrupole strengths in the lattice are effected by changing PolynomB(2) of the given quadrupole
instead of the K value. This element model was chosen so skew and kick elements within quadrupoles
can be controlled independently. Calculations do not substantially differ from those using the simpler
QuadLinearPass element model.

• The RHIC lattice includes thin focusing kicks at the outside ends of the separation DX dipole magnets,
where the design orbit is offset from the magnet center. These focusing kicks are modeled as multipoles
in the RHIC online model SXF lattice, and are modeled as additional thin multipoles in the AT lattice.

Comparison of optics functions between the AT and MADX models for several RHIC low-β storage lattices
shows differences of less than 0.1%. This difference is negligible for the purposes of ORM analysis and LOCO
where we are correcting β errors of 1–20%.
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The RHIC lattices considered in this study were converted from the RHIC online model for the Yellow
ring, pp35::injection, on May 11 2006, and pp35::store on May 30 2006. These lattices correspond to
ORM measurements acquired on those dates. Analysis of these measurements will be reported in another
paper. These lattices are referred to in this paper as the RHIC injection and store lattices. All Matlab files
for this paper are stored in the directory ~mcr/Matlab/at/rhic/SimError. Each iteration of ORM fitting
with all BPMs, correctors, and quadrupoles took approximately 30 minutes on cheetah.

The ORMs for this paper are all generated with dipole corrector changes of 20 µrad. This dipole kick
in an arc dipole corrector produces a maximal arc orbit change of 3 mm, and up to 8–10 mm in the low-β
triplets. These are the dipole corrector changes that were used in the 2006 RHIC ORM measurements.

3 Initial Testing: A Small Set of Large Errors

For an initial test, we introduce four 5% quadrupole errors in the RHIC yellow injection lattice: yi6-qd16 by
-0.0043 m−2, yi7-qf9 by +0.0040 m−2, yi2-qd10 by +0.0043 m−2, and yi3-qf3 by -0.00273 m−2. These errors
are much larger than realistic physical errors in these quadrupoles; fortunately the injection lattice is quite
forgiving, and these errors only create a 5–10% beta wave in both planes of RHIC. Data for this example is
in Matlab file locoTest.m. All quadrupoles, BPMs, and correctors in the lattice are used, and there are no
noise or gain errors in the BPMs and correctors.

The figure of merit for the difference between modeled (or ideal) and measured (or simulated error) orbit
response matrices in LOCO is χ2/dof. This is typically close to 0 for an excellent fit, and � 1 for bad fits.
With the above errors in a simulated test lattice, the initial χ2/dof=11253; the difference between ideal and
simulated ORMs ranges over 0.5 mm. After two iterations of LOCO, fitting all quadrupole gradients, this
reduces to 10, and the residual error between the ideal and simulated ORMs is less than 15 µm at all BPMs.
The four large quadrupole errors are correctly fitted. The final ORM difference, singular values from ORM
analysis, and quadrupole fits are shown in Fig. 1. Similar tests for randomly chosen 5% quadrupole errors
also converge in two iterations for blue and yellow storage lattices.

Figure 1: Difference between model and measured ORM after convergence, singular values, and quadrupole
fits for a test of ORM with the yellow injection lattice. Four artificial large errors were introduced, with
perfect BPMs and correctors; LOCO analysis correctly determines these errors in two iterations.

4 Random Quadrupole Errors with Perfect BPMs

The previous section demonstrated that LOCO can find a small set of large errors, but 5% gradient errors
are much larger than the 0.1-0.2% gradient errors typically expected in RHIC. LOCO has been used to find
errors of this magnitude at the NSLS X-Ray ring [1]. To evaluate whether LOCO can find similar errors in
the ideal RHIC lattice, we simulated uniformly distributed random errors ranging over ±0.1% in the yellow
injection and store lattices, and compared errors fitted by LOCO analysis to the simulated errors. The
difference between model and measured ORMs is 100–500 µm, or 5-10% of the closed orbit changes during
ORM measurement.

For the 0.1% yellow storage lattice case, LOCO rapidly converges from χ2/dof=2757 to 10−6 in three
iterations, and all quadrupole errors are fitted to better than 1σ of the LOCO fit error bars (see Fig. 2).
This analysis uses all singular values in the LOCO SVD analysis, and fits all quadrupoles in RHIC. The
0.1% yellow storage lattice error case is in the Matlab file locoyellowStore0p1ideal.m. Simular results are
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Figure 2: 0.1% gradient error values in the yellow storage lattice (black squares) and values fit by LOCO in
three iterations (red circles and error bars) with perfect BPMs.

Figure 3: 0.1% gradient error values in the yellow storage lattice (black squares) and values fit by LOCO in
three iterations (red dots) with 30 µm random BPM noise. Error bars for the fits are not shown, as they
are 2-3×10−4 m−1, larger than the vertical axis size.

Figure 4: The effects of flat-distribution random 0.1% gradient errors on the beta functions of the yellow
storage lattice, showing ±20% beta waves (left), and residual beta function error between the model and
LOCO fitting with 30 µm random BPM noise (right).
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found for the injection and blue storage lattices. This indicates that the RHIC lattice is not problematically
degenerate for purposes of orbit response and LOCO analysis.

5 Effects and Limits of BPM Noise

Existing ORM data uses the RHIC BPM average orbit system, which averages 10,000 consecutive turns of
position data to provide an average orbit. In a typical arc BPM with β ≈50 m, measured average orbit RMS
noise is 15 µm, split equally between intrinsic noise and random bias from 10 Hz beam motion. The 10 Hz
bias will be minimized in the future by changing the BPM averaging period to a multiple of 7,800 turns. The
short-term BPM RMS average orbit noise is 7 µm in store conditions with a 7,800 turn averaging period [6].

We repeated the 0.1% yellow storage lattice case from the previous section with a conservative 30 µm of
random noise on all BPM measurements. This is 7–20% of the “signal”, or difference between modeled and
measured ORMs for LOCO analysis. Three iterations of LOCO converged from χ2/dof=3.4 in the first
iteration to χ2/dof=0.34 in the last. Further iterations did not improve χ2/dof, as the remaining ORM
differences between the measurement and model were completely attributable to noise.

The simulated quadrupole errors and values fit by LOCO are shown in Fig. 3. Comparison to the case
without BPM noise (Fig. 2) shows no strong correlation between simulated and fitted quadrupole errors.
However, the error bars from LOCO analysis are larger than the scatter of simulated errors; in this sense
the LOCO fit is good. The LOCO fitted gradient errors also reproduce the optics errors through the ring,
improving beta beating by a factor of about 100 as shown in Fig. 4. With this relative BPM accuracy, the
optics in RHIC can be accurately modeled even without absolutely correct fits of the simulated gradient
errors.

Fig. 5 shows LOCO fits of the same 0.1% gradient errors with 5 µm of random noise on all BPM
measurements, 1–3% of the difference between modeled and measured ORMs. All gradient errors are within
1 σ of the LOCO fit. This level of relative BPM accuracy is required if the objective of ORM is to measure
gradient errors accurately for the RHIC storage lattice.

It is important to note that the relative BPM error depends on the difference between the modeled and
measured ORMs; this difference scales linearly with the dipole corrector strengths used to excite difference
orbits for the ORM meaurement. Large dipole corrector strengths induce sextupole feed-down and risk
aperture-induced beam loss, while small dipole corrector strengths make the relative BPM errors large. The
best approach is typically to settle on a desired difference orbit amplitude, and scale all corrector strengths
by
√

β to produce difference orbits of this amplitude for each corrector. The LOCO package can properly
analyze this case, when the excitations of correctors are nonuniform.

Figure 5: 0.1% gradient error values in the yellow storage lattice (black squares) and values fit by LOCO in
three iterations (red dots) with 5 µm random BPM noise. Correlation between fitted and actual errors is
high, and all gradient errors are within 1 σ of the fit.
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6 Effects and Limits of BPM/Corrector Gain Errors

Initial attempts to fit RHIC BPM and corrector gain errors with Matlab LOCO diverged, even when gradient
errors were fitted first. Introducing a harder singular value cut (using only singular values above 10−5 of the
maximum singular value) resolved this problem; this cut removed two obvious scaling degeneracies introduced
by fitting all BPM and corrector gains. This permits LOCO analysis of realistic RHIC ORM data, including
BPM and corrector gain errors.

To test these gain errors, BPM and corrector gain errors were randomly distributed over ±5% and applied
to the simulation conditions of the previous section (yellow store lattice, ±0.1% random gradient errors),
and these errors were fitted with LOCO as extra degrees of freedom along with gradient errors. Source code
for this test is located in the file locoYellowStore0p1 bpmcorr5percent.dat. This LOCO fit converged to
fit BPM and corrector gains and gradient errors nearly perfectly in 3 iterations, reducing χ2/dof from 3.6
to 10−4.

Fig. 6 shows BPM and corrector gain error data from this test. The LOCO fit and original model errors
agree to within 1σ for nearly all BPMs and correctors, though there are discrepancies in the 5 o’clock area,
particularly for corrector gains. This is attributable to the high beta functions in IR6 triplets, and can be
addressed with judicious additional singular value cuts in the LOCO analysis.

Figure 6: Modeled random errors and LOCO fits for BPM and corrector gain errors in the yellow storage
lattice, with no BPM noise. This model generated ±5% gain errors for BPMs and correctors, and fitted
±0.1% quadrupole errors. Quadrupole error fits were comparable to Fig.2

Table 1: RMS spread around a perfect spread for LOCO fits of random ±5% BPM and corrector gain errors,
with random ±0.1% quadrupole gradient errors, in the yellow store lattice. Raw data for the 30 µm noise
case is shown in Fig. 7.

BPM Noise BPM gain fit Corrector error fit
rms spread rms spread [mrad]

No noise 2.7× 10−3 4.5× 10−5

5 µm noise 4.2× 10−3 4.3× 10−5

30 µm noise 3.9× 10−3 6.4× 10−5

Can BPM and corrector gain errors of this magnitude be determined using LOCO with realistic BPM
errors? We consider the same two cases (30 µm and 5 µm BPM noise) as the previous section. ORM analysis
of these cases converges quickly and reduces beta beating by a factor of 200–300, consistent with Fig.4.

Fig. 7 compares model errors and LOCO fits of those model errors in the yellow storage lattice, with
30 µm BPM noise, ±5% random BPM and corrector gain errors, and ±0.1% quadrupole gradient errors.
Even with realistic noise, BPM and corrector gain errors are within 1σ of the fit produced by LOCO. The
RMS spreads around a perfect fit for all cases are listed in Table 1. In the cases of no BPM noise and
30 µm BPM noise, scaled error spreads are comparable for BPM and corrector gain errors, and are less than
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0.5%. These BPM and corrector gain uncertainties from LOCO analysis are achievable with realistic BPM
noise.

Figure 7: Modeled random errors and LOCO fits for BPM and corrector gain errors in the yellow storage
lattice, with 30µm BPM noise. LOCO accurately finds nearly all BPM and corrector gain errors with this
level of noise, though there are occasional outliers; for example, the BPM outlier is yo7-bv3, a vertical BPM
located in the 7 o’clock low-beta region.

7 Conclusions

An infrastructure to analyze orbit response matrices (ORMs) using Matlab LOCO and AT packages has
been installed in C-AD. With no noise in RHIC BPMs, simulated 0.1% gradient errors in the Run-6 pp
yellow storage lattice were fitted perfectly by LOCO; this lattice is not degenerate for the purposes of fitting
all quadrupoles for gradient errors with ORM and LOCO analysis.

RHIC average orbit BPM noise is about 30 µm RMS in arc BPMs. With ORM corrector strengths of
20 µrad and this level of BPM noise, 0.1% gradient errors cannot be individually resolved, but beta beating is
still reduced by two orders of magnitude. Improvement of orbit measurements to 5 µm RMS lowers gradient
fit error bars to about 0.02% of set gradient. ORM analysis of BPM and corrector gain errors in the presence
of realistic 30 µm BPM noise produces correct gains to an accuracy of much less than 1%, though care must
be taken with low-β IR triplet correctors and BPMs due to their high sensitivity.
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